要点就是“让其他人看完能理解”或者“通过训练我能学会”的内容。智学网为各位同学整理了《高中二年级数学必学二要点复习笔记》,期望对你的学习有所帮助!
1.高中二年级数学必学二要点复习笔记 篇一
判断函数零点个数的常用办法
1、解方程法:
令f=0,假如能求出解,则有几个解就有几个零点。
2、零点存在性定理法:
借助定理不只要判断函数在区间[a,b]上是连续持续的曲线,且f·f<0,还必须结合函数的图象与性质才能确定函数有多少个零点。
3、数形结合法:
转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。
已知函数有零点求参数取值常见的办法
1、直接法:
直接依据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
2、离别参数法:
先将参数离别,转化成求函数值域问题加以解决。
3、数形结合法:
先对分析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。
2.高中二年级数学必学二要点复习笔记 篇二
算法定义:在数学上,现代意义上的算法一般是指可以用计算机来解决的`某一类问题是程序或步骤,这类程序或步骤需要是明确和有效的,而且可以在有限步之内完成.
算法的特征:
①有限性:一个算法的步骤序列是有限的,需要在有限操作之后停止,不可以是无限的.
②确定性:算法中的每一步应该是确定的并且能有效地实行且得到确定的结果,而不应当是模棱两可.
③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每个步骤只能有一个确定的后继步骤,前一步是后一步的首要条件,只有实行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.
④不性:求解某一个问题的解法可能不是的,对于一个问题可以有不一样的算法.
⑤常见性:不少具体的问题,都可以设计适当的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.
3.高中二年级数学必学二要点复习笔记 篇三
导数是微积分中的`要紧基础定义。当函数=f的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a假如存在,a即为在x0处的导数,记作f'或df/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。假如函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的定义对函数进行局部的线性逼近。比如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有些函数都有导数,一个函数也未必在所有些点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,不然称为不可导。然而,可导的函数肯定连续;不连续的函数肯定不可导。
对于可导的函数f,xf'也是一个函数,称作f的导函数。探寻已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的定义。
设函数=f在点x0的某个邻域内有概念,当自变量x在x0处有增量Δx,也在该邻域内时,相应地函数获得增量Δ=f-f;假如Δ与Δx之比当Δx→0时极限存在,则称函数=f在点x0处可导,并称这个极限为函数=f在点x0处的导数记为f',也记作'│x=x0或d/dx│x=x0
4.高中二年级数学必学二要点复习笔记 篇四
数列的概念
按肯定次序排列的一列数叫做数列,数列中的每个数都叫做数列的项.
从数列概念可以看出,数列的数是按肯定次序排列的,假如组成数列的数相同而排列次序不同,那样它们就不是同一数列,比如数列1,2,3,4,5与数列5,4,3,2,1是不一样的数列.
在数列的概念中并没规定数列中的数需要不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….。
数列的项与它的项数是不一样的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是等于f,而项数是指这个数在数列中的地方序号,它是自变量的值,等于f中的n.
次序对于数列来讲是十分要紧的,有几个相同的数,因为它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质有什么区别.如:2,3,4,5,6这5个数按不一样的次序排列时,就会得到不一样的数列,而{2,3,4,5,6}中元素不论按什么样的次序排列都是同一个集合.
5.高中二年级数学必学二要点复习笔记 篇五
空间中的平行问题
直线与平面平行的断定及其性质
线面平行的断定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.
线线平行线面平行
线面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那样这条直线和交线平行.线面平行线线平行
平面与平面平行的断定及其性质
两个平面平行的断定定理
假如一个平面内的两条相交直线都平行于另一个平面,那样这两个平面平行
,
假如在两个平面内,各有两组相交直线对应平行,那样这两个平面平行.
,
垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
假如两个平面平行,那样某一个平面内的直线与另一个平面平行.
假如两个平行平面都和第三个平面相交,那样它们的交线平行.